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Abstract— In practical model predictive control (MPC)
implementations, constraints on the states are typically
softened to ensure feasibility despite unmodeled distur-
bances. In this work, we propose a soft constrained MPC
formulation supporting polytopic terminal sets in half-
space and vertex representation, which significantly in-
creases the feasible set while maintaining asymptotic sta-
bility in case of constraint violations. The proposed formu-
lation allows for leveraging system trajectories that violate
state constraints to iteratively improve the MPC controller’s
performance. To this end, we apply convex optimization
techniques to obtain a data-driven terminal cost and set,
which result in a quadratic MPC problem.

Index Terms— Predictive control for linear systems, Con-
strained control, Iterative learning control

I. INTRODUCTION

CONTROL problems can often be described as the min-
imization of a desired objective function subject to

physical limitations on the control input and safety specifi-
cations on the states. As classical control approaches, e.g.
Proportional-Integral-Derivative (PID) or Linear-Quadratic-
Regulator (LQR) control, cannot explicitly consider such
specifications, model predictive control gained popularity as
a solution to constrained optimal control problems in both
research and industry. In addition, more recent advances in
learning-based MPC allow for an automated and data-driven
design refinement of the MPC problem, see, e.g., [1], [2], to
improve the closed-loop performance in an automated fashion.

Despite its benefit of offering theoretical guarantees in terms
of constraint satisfaction and performance, an MPC controller
implementation is often challenging, as it requires the solution
of an optimization problem in real-time using incoming system
measurements. While efficient numerical libraries for MPC
implementation are available today, see e.g. [3], recursive
feasibility guarantees commonly rely on the correctness of the
model assumptions, as well as optimality when solving the
MPC problem. Especially in the context of modern learning-
based design mechanisms, it is, however, vital to deal with
unknown disturbances in practice. As a result, system state
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constraints are often implemented in a soft constrained man-
ner [4], penalizing constraint violations in the cost function. As
soon as the softening is active, however, stability guarantees
of the closed-loop system are generally lost and alternative
formulations as presented, e.g., in [5] and [6] need to be
employed. While the specific method in [5] offers desirable
properties, i.e. constraint satisfaction if possible and input-to-
state stability, even in the case of predicted or actual state
constraint violations, the resulting MPC problem becomes a
second-order cone program. This is due to constraining the
last predicted state in an adaptively scaled ellipsoidal set
that needs to be a subset of the softened state constraints.
Despite the convexity of the resulting MPC problem, more
advanced optimization algorithms are needed compared with
more common linear or quadratic MPC problems, which
can, e.g., be additionally pre-solved offline [7] to reduce
the online computational load. Furthermore, modern learning
MPC formulations [8], [9] based on polytopic terminal set
enhancements are incompatible with these existing soft con-
strained MPC formulations.

Contributions: We propose an asymptotically stable soft
constrained MPC scheme for linear systems with polytopic
constraints using polytopic terminal sets in both half-space
representation (H-representation) and vertex representation (V-
representation). While maintaining the desirable closed-loop
properties from [5], we reduce the MPC problem in both
representations to a convex quadratic programming problem.
Besides a less complex soft constrained MPC problem, the
support of polytopic terminal sets in H-representation can
significantly improve the control performance for small- to
mid-sized systems by allowing for the use of a maximal
forward invariant terminal set rather than an ellipsoidal inner
approximation.

The support of terminal sets in V-representation facilitates
rigorous softening of learning-based MPC formulations [1] to
improve the performance of an iterative task using system
trajectories, even in case of state constraint violations, by
an enlargement of the terminal set and by approximating an
optimal terminal value function. This allows for initializing
the learning procedure with a poorly performing MPC, e.g.,
due to a short planning horizon, or a very basic unconstrained
controller. We extend a learning-based formulation [1] based
on an affine transformation of the system data, which preserves
convexity and maintains a quadratic programming problem
structure, thereby enabling a practical application to larger-



scale systems. We illustrate the method using a small- and a
large-scale numerical example.

Related Work: Related approaches include [6], which
investigates recovery from infeasible states at the level of
the optimization algorithm. The results are tailored to a
limited class of algorithms, which prohibits the application
of, e.g., conventional interior-point methods [10] and software
tools like [11]. Compared to the learning-based MPC scheme
presented in [8], which we use as basis for the proposed
method, it should be noted that [9] provides a less conservative
approach to leverage existing data. However, in the important
special case of a quadratic stage cost function, a semi-definite
programming problem is obtained that can be difficult to solve
reliably in case of short sampling times.

II. PROBLEM STATEMENT AND MPC BACKGROUND

We consider linear discrete-time systems of the form

x(k + 1) = Ax(k) +Bu(k), k ∈ N, (1)

with states x(k) ∈ Rn, inputs u(k) ∈ Rm, and initial condition
x(0) = xs ∈ Rn. The system (1) has physical input limitations
u(k) ∈ U of the form U := {u ∈ Rm | Auu ≤ bu} with
Au ∈ Rnu×m, bu ∈ Rm, and it should be operated within
safety specifications of the form x(k) ∈ X with X := {x ∈
Rn | Axx ≤ bx}, where Ax ∈ Rnx×n, bx ∈ Rnx .

To approximately minimize a control objective of the
form

∑∞
k=0 `(x(k), u(k)) with stage cost function `(x, u) :=

x>Qx+u>Ru and Q ∈ Rn×n and R ∈ Rm×m positive semi-
definite and positive definite, we consider a model predictive
control scheme. At every time step k, an MPC problem is
solved, which is given by

min
ui

JMPC(x, {ui}) := `f (xN ) +

N−1∑
i=0

`(xi, ui) (2a)

s.t. x0 = x, (2b)
xi+1 = Axi +Bui, ∀i = 0, .., N − 1, (2c)
Auui ≤ bu, ∀i = 0, .., N − 1, (2d)
Axxi ≤ bx, ∀i = 0, .., N − 1, (2e)
ĀfxN ≤ b̄f , (2f)

optimizing over an input and state sequence {ui} and {xi},
with i denoting the prediction time step, but only the first input
element is applied to the system. The resulting MPC control
law is then given by u(k) = πnom(x(k)) := u∗0, with u∗i and
x∗i being solutions to (2), defined on the feasible set X nom

N :=
{x ∈ Rn|(2b)− (2f)}. In (2a) we use a finite horizon sum of
stage costs up to a planning horizon N as the objective, with
an additional terminal cost term `f . (2f) imposes a terminal
set constraint of the form X̄f := {x ∈ Rn | Āfx ≤ b̄f} ⊆ X,
with Āf ∈ Rn̄f×n and b̄f ∈ Rn̄f , satisfying the following
standard assumption [12].

Assumption II.1. Consider a terminal set X̄f ⊆ X, 0 ∈
int(X̄f ) and terminal cost function `f : X̄f → R+. A linear
state-feedback control law u = Kx, K ∈ Rm×n exists, such
that for all x ∈ X̄f it holds that u = Kx ∈ U, Ax+Bu ∈ X̄f ,
and `f (Ax+BKx)− `f (x) ≤ −`(x,Kx).

Theorem II.2 (See, e.g., [12]). If Assumption II.1 holds,
then the origin is an asymptotically stable equilibrium point
for the closed-loop system (1) under application of u(k) =
πnom(x(k)) with a region of attraction given by X nom

N .

In addition to the often approximate linear model as-
sumption in (1), we typically encounter unmodeled external
disturbances resulting, e.g., from changing operating condi-
tions, causing infeasibility of the MPC online problem (2).
In the following, we therefore provide a soft constrained
reformulation of (2) using polytopic terminal sets in half-
space representation (H-representation) as in (2f), which is
introduced in Section III. To also support terminal sets in
vertex representation (V-representation) of the form

X̄f := co
(
{x̄fe}

Ne
e=0

)
with x̄f0 = 0, (3)

we provide an alternative formulation in Section IV and
thereby avoid the need for computationally expensive transfor-
mations between H- and V-representations. Most importantly,
the formulation in V-representation allows us to derive a
learning-based MPC in Section V, leveraging system trajecto-
ries even with constraint violations.

III. SOFT CONSTRAINED MPC WITH POLYTOPIC
TERMINAL SETS IN H-REPRESENTATION

As the constraints on the inputs are typically physical
limitations that cannot be exceeded, a common approach to
maintain feasibility of (2) is to soften the state constraints (2e)
and to enlarge the terminal set from Assumption II.1 beyond
the state constraints. Using the basic mechanisms presented
in [5] to maintain stability, a soft constrained MPC problem
with a polytopic terminal set reads

min
ui,ξi,
α

JMPC(x, {ui}) + `ξ(ξN ) +

N−1∑
i=0

`ξ(ξi + ξN ) (4a)

s.t. (2b)− (2d), 1 ≥ α ≥ 0, ξN ≥ 0, (4b)
ξi ≥ 0, ∀i = 0, .., N − 1, (4c)
Axxi ≤ bx + ξi + ξN , ∀i = 0, .., N − 1, (4d)
AfxN ≤ αbf , (4e)
hf ([Ax]j , α) ≤ [bx + ξN ]j , ∀j = 1, .., nx, (4f)

with [Ax]j denoting the j-th row of Ax. In (4) we carry over
the original objective (2a) as well as prediction and input
constraints (4a) and (4b) from (2) and additionally introduce
so-called slack-variables ξi and a terminal set scaling factor α
with additional penalty terms in (4a) of the form `ξ(ξ) := c>ξ
with c > 0 sufficiently large to represent an exact penalty
function, see, e.g., [4]. While the slack variables ξi, i =
0, .., N−1 allow for constraint violations along the prediction
horizon if necessary, (4f) represents the required terminal slack
ξN w.r.t. a scaled terminal set αXf := {x ∈ Rn|Afx ≤ αbf},
Af ∈ Rnf×n, bf ∈ Rnf . Importantly, the terminal set is not
required to be a subset of the state constraints:

Assumption III.1. The terminal set Xf satisfies all conditions
in Assumption II.1 except for Xf ⊆ X , i.e. neglecting state
constraints.



By allowing for Xf * X we can enlarge the terminal
set, i.e. X̄f ⊆ Xf , and can require the last predicted state
to be contained in αXf through (4e) without being overly
restrictive. The terminal slack ξN thereby ensures that αXf
is fully contained inside the softened state constraints, i.e.
αXf ⊆ {x ∈ Rn|Axx ≤ bx+ξN}. The latter subset condition
translates into (4f) using the support function

h([Ax]j , α) := max
x∈Rn

[Ax]jx s.t. Afx ≤ αbf (5)

for each state constraint half-space j = 1, .., nx. Differently
from a basic state constraint softening, e.g. [4], we employ
both the stage-wise and terminal slacks at every prediction
step in (4d) and in the stage-wise penalty (4a). As shown
in [5] these components yield a strong incentive to first obtain
terminal constraint satisfaction, which allows to establish
asymptotic stability despite constraint violations.

We denote the soft constrained MPC control law resulting
from (4) by u(k) = πhrep(x(k)) := u∗0(x(k)) with the
enlarged feasible set X hrep

N := {x ∈ R|(4b) − (4f)} ⊃ X nom
N .

Note that a direct implementation of (4) would yield a non-
linear optimization problem due to (4f), for which we provide
a convex reformulation after the following theorem, showing
recursive feasibility and asymptotic stability.

Theorem III.2. If Assumption III.1 holds, then the origin
is an asymptotically stable equilibrium point for the closed-
loop system (1) under application of u(k) = πhrep(x(k))

with a region of attraction X hrep
N . Furthermore, there exists a

sufficiently large constant c ∈ R+ for the penalty `ξ(ξ) = c>ξ,
such that zero slack at some time step k, ξ∗i (k) = 0, implies
zero slack for all future time steps k̄ > k, ξ∗i (k̄) = 0.

Proof. The proof is a direct extension of [5]. For every
x ∈ X hrep

N , we construct a feasible candidate solution for
the next state x+ = Ax + Bπhrep(x) as u+

i = u∗i+1 for
i = 0, .., N − 2 with u+

N−1 = Kx∗N , x+
i = x∗i+1, and

ξ+
i = ξ∗i+1 for i = 0, .., N − 1 with x+

N = (A + BK)x∗N
and ξ+

N = ξN , α+ = α since αXf is invariant for every
0 ≤ α ≤ 1 by convexity of U, linearity of (1), and 0 ∈ Xf .
Furthermore, the cost (4a) serves as a Lyapunov function and
the cost difference at x+ using {ξ+

i , u
+
i , x

+
i , α

+} compared
with the optimal cost at x can be bounded from above by
−`(x, πhrep(x)) using Assumption III.1, which implies the
first part of the Theorem. The second part directly follows
from the analysis above in combination with exact penalty
arguments, see, e.g., [4].

Remark III.3. While we show asymptotic stability for sys-
tem (1) in this paper, the results can directly be extended to
prove input-to-state stability of a system of the form x(k+1) =
Ax(k)+Bu(k)+w(k) with w(k) ∈ W by extending the results
in [5, Thm. V.2].

In the following, we introduce a convex reformulation of (4),
which yields a quadratic program.

Lemma III.4. The constraints (4f) are equivalent to

αµ∗j ≤ [bx + ξN ]j , ∀j = 1, .., nx, with (6a)

αµ∗j = αmin
νj

ν>j bf s.t. ν>j Af − [Ax]j = 0, νj ≥ 0. (6b)

Proof. The constraints (6) are obtained by formulating the
dual problem of (5). The Lagrangian of (5) is given by
L(x, ν) = −[Ax]jx+ ν>j (Afx− αbf ) with dual function

g(νj) =

{
−ν>j bfα, if ν>j Af − [Ax]j = 0,

−∞, otherwise.

The dual problem therefore results in (6b) by noting that the
optimizer ν∗j of (6b) is invariant under a linear scaling with
α > 0 and that the optimal value is 0 for α = 0. Since the
support function problem (5) is an LP and is always feasible,
strong duality holds, i.e. αµ∗j = maxx̄ s.t. Af x̄≤αbf [Ax]j x̄ [13,
Section 5.2.4], which completes the proof.

Lemma III.4 allows us to pre-compute the support func-
tion (5) up to the scaling α through (6b) for all half-spaces
j = 1, .., nx, resulting in linear inequalities given by (6a),
replacing (4f) and therefore we obtain a quadratic program as
a soft constrained online MPC problem. Note that in relation
to the overall number of constraints in an MPC problem (2),
the additional nx linear inequality constraints due to (6a) in (4)
do not significantly increase the problem complexity.

Remark III.5. Condition (6a) can equivalently be derived
using the vertex representation (3) by reformulating (4f) as

max
ej=1,..,Ne

[Ax]j(αx
f
ej ) ≤ [bx + ξN ]j , ∀j = 1, .., nx

to obtain µ∗j = [Ax]jx
f
ej∗ , with optimal ej∗ computed offline.

IV. SOFT CONSTRAINED MPC WITH POLYTOPIC
TERMINAL SETS IN V-REPRESENTATION

Various learning-based procedures such as [8], [9] rely on
a vertex representation of the terminal set in particular when
allowing for enlargement of the terminal set based on available
trajectories. Since the transformation between the H- and V-
representations of Xf becomes computationally prohibitive for
large-scale systems, we provide an alternative soft constrained
MPC formulation in this section that directly supports terminal
sets in the V-representation according to Assumption III.1
of the form (3). As a first step, we note that a simple
integration of (3) into the soft constrained MPC problem
as done in [8] would cast (4e)-(4f) with scaled terminal set
αXf = co

(
{αxfe}

Ne
e=0

)
into

Axαx
f
e ≤ bx + ξN , λe ≥ 0,ΣNe

e=0λe = 1, xN = ΣNe
e=0λeαx

f
e

with multipliers λe, where xN needs to be a convex combina-
tion of the vertices of αXf . Due to the scaling through α in
the soft constrained case, this introduces the bilinearity λeα.
We present a convex reformulation based on the following
relation, which exploits that xf0 = 0 according to (3):

Lemma IV.1. Consider (3). For any 0 ≤ α ≤ 1 it holds that

αXf =
{

ΣNe
e=0λ̄ex

f
e |Σ

Ne
e=0λ̄e = 1, λ̄0 = 1− α

}
:= X̄αf .



Using Lemma IV.1, we avoid the bilinearity by using the
scaling α = 1− λ0, which yields the convex MPC problem

min
ui,ξi,
λe

JMPC(x, {ui}) + `ξ(ξN ) +

N−1∑
i=0

`ξ(ξi + ξN ) (7a)

s.t. (2b)− (2d), ξN ≥ 0, (7b)
ξi ≥ 0, ∀i = 0, .., N − 1, (7c)
Axxi ≤ bx + ξi + ξN , ∀i = 0, .., N − 1, (7d)

Ax(1− λ0)xfe ≤ bx + ξN , ∀e = 0, .., Ne, (7e)
λe ≥ 0, ∀e = 0, .., Ne, (7f)

xN = ΣNe
e=0λex

f
e , and ΣNe

e=0λe = 1, (7g)

preserving the theoretical properties from Theorem III.2.

V. LEARNING-BASED MPC FROM TRAJECTORIES WITH
CONSTRAINT VIOLATIONS

In this section, we use the soft constrained MPC approach
derived in Section IV to propose a learning-based MPC
formulation for iterative tasks of horizon N̄ , starting at initial
condition xs. To this end, we provide a mechanism based
on [8] to improve the closed-loop performance using available
system trajectories by enlarging the terminal set and by
improving the terminal cost estimate. Consider Ne different
system trajectories of (1) satisfying

DNe
=
{
{xk,e, uk,e, Vk,e}k=N̄,e=Ne

k=0,e=0

}
, (8a)

xN̄,e = 0, x0,e = xs, uN̄,e = 0,∀e = 0, .., Ne (8b)

uk,e ∈ U, ∀k = 0, .., N̄ ,∀e = 0, .., Ne, (8c)

Vk,e = ΣN̄i=k
˜̀(xi,e, ui,e), (8d)

where k denotes the time step of each state per trajectory
sample e starting from xs and reaching the origin within
N̄ time steps. Importantly, note that these trajectories can
violate state constraints. This enables to learn from experi-
ments, where temporary constraint violation has not caused
the system to fail or where data has been gathered under
more permissive state constraints, e.g., on a wider test track
in case of autonomous driving. In (8d), we use ˜̀(xi,e, ui,e) :=
`(xi,e, ui,e) + `ξ(max(0, Axxi,e − bx)) as the combined per-
formance cost and constraint violation penalty.

Remark V.1. Available trajectories that do not satisfy xN̄,e =
0 can often be extended through a predicted open-loop trajec-
tory via an MPC problem, starting from the last state of the
trajectory and resulting in the origin.

Different from the case discussed in Section IV, we do
not assume access to a terminal set Xf and a terminal cost
function `f , but construct a corresponding estimate using
available data (8). Thereby, the main difference compared
with similar learning-based approaches [8], [9], [14] is the
data-driven terminal set and cost synthesis to ensure stability
and constraint satisfaction if possible, based on trajectories
that potentially violate constraints. In particular, we develop
a convex mechanism to learn from cost samples Vk,e that
are available at potentially unsafe data locations xk,e, which
naturally would result in a non-convex bilinear MPC cost,

similar as in [9]. In the following, we therefore derive a convex
scalable barycentric terminal cost function from [8], [14] using
data (8), which is given by

J∗,BC
f (x) := min

λk,e

Σk,eλk,eVk,e (9a)

s.t. x = Σk,eλk,exk,e, (9b)
Σk,eλk,e = 1, (9c)
λk,e ≥ 0, ∀k, e, (9d)

where we use ‘Σk,e’ as shorthand for ‘Σk=N̄,e=Ne

k=0,e=0 ’ with a
feasible terminal set XBC

f = {x ∈ Rn|(9b)− (9d)}, which can
be scaled linearly by α through enforcing the convex constraint
1− ΣNe

e=0λN̄,e = α, since xN̄,e = 0 (8b), see Lemma IV.1.

Lemma V.2. Consider the barycentric function J∗,BC
f (x)

defined in (9) based on available system data according
to (8) with the feasible set XBC

f . For every x ∈ XBC
f with

corresponding optimal solution λ∗k,e to (9), there exists an
input u ∈ U such that Ax+Bu ∈ XBC

f with feasible solution
λ+
k,e satisfying ΣNe

e=0λ
∗
N̄,e

≤ ΣNe
e=0λ

+
N̄,e

, and J∗,BC
f (Ax +

Bu)− J∗,BC
f (x) ≤ −`(x, u)− `ξ(max(0, Axx− bx)).

Proof. Select u = Σk=N̄,e=Ne

k=0,e=0 λ∗k,euk,e with uk,e available
from (8) and note that u ∈ U due to convexity of U. We
have for x+ = Ax+Bu that

x+ = AΣk=N̄,e=Ne

k=0,e=0 λ∗k,exk,e +BΣk=N̄,e=Ne

k=0,e=0 λ∗k,euk,e

= Σk=N̄−2,e=Ne

k=0,e=0 λ∗k,exk+1,e,

since xN̄,e = AxN̄,e + BuN̄,e = 0 due to (8b). Define
λ+
k+1,e = λ∗k,e for all e = 0, .., Ne, k = 0, .., N̄ − 2,
λ+

0,e = 0, and ΣNe
e=0λ

+
N̄,e

:= 1 − Σk=N̄−1,e=Ne

k=0,e=0 λ+
k,e. We

obtain Σk=N̄,e=Ne

k=0,e=0 λ+
k,exk,e = x+, Σk=N̄,e=Ne

k=0,e=0 λ+
k,e = 1

and λ+
k,e ≥ 0 as required by (9b), (9c), and (9d). Further,

note that it holds ΣNe
e=0λ

∗
N̄,e

= 1 − Σk=N̄−1,e=Ne

k=0,e=0 λ∗k,e ≤
1 − Σk=N̄−2,e=Ne

k=0,e=0 λ∗k,e = ΣNe
e=0λ

+
N̄,e

, ensuring that λ+
k,e is a

feasible solution for (9) at x+ with desired properties. The
cost decrease condition can be verified using λ+

e,k as follows:

J∗,BC
f (x+)− J∗,BC

f (x)

=− Σk=N̄−1,e=Ne

k=0,e=0 λ∗k,e
˜̀(xk,e, uk,e)

=− Σk=N̄,e=Ne

k=0,e=0 λ∗k,e
˜̀(xk,e, uk,e)

≤− ˜̀(Σk=N̄,e=Ne

k=0,e=0 λ∗k,exk,e,Σ
k=N̄,e=Ne

k=0,e=0 λ∗k,euk,e),

=− ˜̀(x, u),

where we exploit the definition of λ+
k,e, as well as VN̄,e = 0,

xN̄,e = 0, uN̄,e = 0, ˜̀(xN̄,e, uN̄,e) = 0 for all e = 0, .., Ne
by definition (8b), and convexity of ˜̀ in combination with
Jensen’s inequality, completing the proof.

Lemma V.2 allows us to state a soft constrained MPC prob-
lem using the data-driven terminal cost J∗,BC

f and terminal set



XBC
f as follows:

min
ui,ξi,λk,e

`ξ(ξN ) + Σk=N̄,e=Ne

k=0,e=0 λk,eVk,e+

ΣN−1
i=0 (`(xi, ui) + `ξ(ξi + ξN )) (10a)

s.t. (2b)− (2d), (10b)
ξN ≥ 0, ξi ≥ 0, ∀i = 0, .., N − 1, (10c)

Ax(1− ΣNe
e=0λN̄,e)xk,e ≤ bx + ξN , (10d)

Axxi ≤ bx + ξi + ξN , ∀i = 0, .., N − 1, (10e)
λk,e ≥ 0,∀k = 0, .., N̄ , e = 0, ..Ne, (10f)

xN = Σk=N̄,e=Ne

k=0,e=0 λk,exk,e, (10g)

Σk=N̄,e=Ne

k=0,e=0 λk,e = 1, (10h)

with control law πDNe
(x(k)) := u∗0, feasible set XDNe

N :=
{x ∈ R|(10b)− (10h)}, and optimal cost J∗DNe

(xs).

Corollary V.3. If the data used to define the learning-
based MPC problem (10) satisfies (8), then the origin is an
asymptotically stable equilibrium point for the closed-loop
system (1) under application of u(k) = πDNe

(x(k)) with
region of attraction XDNe

N . Furthermore, a sufficiently large
constant c ∈ R+ exists for the penalty `ξ(ξ) = c>ξ such that
zero slack at some time step k, ξ∗i (k) = 0, implies zero slack
for all future time steps k̄ > k, ξ∗i (k̄) = 0.

Proof. The proof follows directly from the proof of Theo-
rem III.2 together with Lemma V.2.

Enlargement of the feasible set XDNe

N through data (8)
comes at the cost of additional optimization variables λk,e per
trajectory e of length Ne and per time step k, which introduces
Ne variables and Ne + 1 constraints in (10). In comparison, a
soft constrained MPC with a standard terminal set within state
constraints but with an enlarged horizon of N+Ne would lead
to additional mNe input variables, nuNe input constraints and
nxNe state constraints, see Section VI b) for a computational
comparison.

Iterative performance improvement: Next, we investigate
if the proposed soft constrained MPC controller according
to (10) ensures iterative performance improvement despite
leveraging system trajectories that potentially violate state
constraints in combination with the online scaling mechanism
of the terminal components. At every iteration, the data set
DNe

is extended using one closed-loop system trajectory
satisfying (8) according to

DNe+1 = DNe
∪ {xk,Ne+1, uk,Ne+1, Vk,Ne+1}N̄k=0, (11)

with uk,Ne+1 = πDNe
(xk,Ne+1).

Theorem V.4. Consider a dataset (11) satisfying (8b)-(8d). It
holds that

V0,Ne+1 ≤ J∗DNe
(xs) and J∗DNe+1

(xs) ≤ J∗DNe
(xs) (12)

with optimal cost J∗DNe
(xs) according to (10). If, in addition,

`ξ(max(0, Axxk,e − bx)) = 0 for all k ≥ 0 and e ≥ 0 it
follows that

V0,Ne+1 ≤ V0,Ne
. (13)

Proof. We first consider (12): Since (10) using DNe+1

is feasible for any solution of (10) using DNe , it
holds that J∗DNe+1

(xs) ≤ J∗DNe
(xs). Using the can-

didate sequence from the proof of Theorem III.2 we
can conclude that J∗DNe

(xk+1,Ne+1) − J∗DNe
(xk,Ne+1) ≤

−`(xk,Ne+1, uk,Ne+1)− `ξ(max(0, Axxk,Ne+1− bx) since `ξ
is affine. This allows us to derive the upper bound

ΣN̄−1
k=0 J

∗
DNe

(xk+1,Ne+1)− J∗DNe
(xk,Ne+1) ≤

ΣN̄−1
k=0 − `(xk,Ne+1, uk,Ne+1)− `ξ(max(0, Axxk,Ne+1 − bx)

implying J∗DNe
(xN̄,Ne+1) − J∗DNe

(xs) = −J∗DNe
(xs) ≤

−V0,Ne+1 by exploiting the telescoping sum and xN̄,Ne+1 =
uN̄,Ne+1 = 0. To prove (13), we show J∗DNe

(xs) ≤
V0,Ne implying with (12) that V0,Ne+1 ≤ V0,Ne : V0,Ne =
ΣNk=0

˜̀(xk,Ne , uk,Ne) + ΣN̄k=N+1
˜̀(xk,Ne , uk,Ne) ≥ J∗DNe

(xs),
since `ξ(max(0, Axxk,Ne+1)−bx)) = 0 for all k ≥ 0 allowing
to select xi = xi,Ne

, ui = ui,Ne
, ξi = 0, ξN = 0, and

λN̄,Ne
= 1, λk 6=N,e = 0 for all k, e as feasible candidate

solution to (10) completing the proof.

Remark V.5. As long as we observe a performance im-
provement (13), we can exchange old trajectories with new
trajectories, maintaining the complexity of the MPC problem,
while refining the data used for design. A corresponding
practical implementation strategy would be to keep adding
trajectories until `ξ(max(0, Axxk,Ne+1) − bx)) = 0 for all
k ≥ 0 holds, i.e. until there are no closed-loop constraint
violations, followed by only updating old trajectories.

Remark V.6. While establishing convergence to the global
optimal solution as shown in [8, Theorem 3] is beyond the
scope of this paper, note that the analysis of the proposed
method can be reduced to the special case considered in [8]
if an iterative refinment of the terminal set according to Re-
mark V.5 allows to eliminate constraint violating trajectories.

VI. NUMERICAL EXAMPLES

In this section we present small- and large-scale simulation
examples to demonstrate the proposed method. A matlab script
with further details and plots can be found online [15].

a) Illustrative 2D example: We consider a Euler-discretized
2D mass-spring-damper system with 0.05 seconds sampling
time, spring constant 1, mass 1, damping factor 0.1, and cost
Q = ( 1 0

0 0.1 ), R = 1. The position and velocity are constrained
to the interval [−1, 1] and an external control force, acting
on the mass, to [−2, 2]. We construct a terminal set and cost
function according to Section IV using closed-loop trajectories
resulting from a saturated LQR controller. As depicted in
Figure 1, we initialize the system outside the state constraints
such that the corresponding scaling of the terminal set is
required to be larger than the system’s state constraints for
obtaining a feasible solution. As depicted by the shaded blue
rectangles, the state constraints need to be softened besides the
required terminal slack values. Nevertheless, the closed-loop
system under the proposed soft-constrained MPC controller
asymptotically converges to the origin, and the terminal set
becomes smaller at every time step until it is fully contained
in the state constraints. In a second example, we initialize the



e V0,e,VI a) J∗De
(xs),VI a) V0,e,VI b) J∗De

(xs),VI b)
1 2885.16 7762.08 3144.87 5781.10
2 8.56 1287.43 2912.45 3083.58
3 7.47 9.04 2905.22 2908.93
4 7.36 7.37 2903.65 2904.90

10 7.36 7.36 2902.15 2902.19

TABLE I
CLOSED-LOOP COST V0,e AND MPC COST J∗De

(xs) STARTING FROM

INITIAL STATE xs DURING DIFFERENT EPISODES e USING THE

ITERATIVE TERMINAL SET ENLARGEMENT ACCORDING TO (11).
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Fig. 1. Visualization of numerical example VI a): The predicted state
trajectory is shown, starting at x = [7.5, − 7.5] (circles) with
predicted state constraint softening (shaded blue rectangles) and scaled
terminal set (shaded red polytope). The black line with crosses shows
the closed-loop trajectory with final state constraint (small rectangle) and
corresponding terminal set (small red polytope).

terminal set with {0} and perform iterative learning with initial
state xs = [0.75, 0.75]> according to Section V, Remark V.5.
The corresponding MPC problem and closed-loop cost values
are given in Table I, which confirm the bounds presented in
Theorem V.4 and converge to the global optimal solution.
Finally, we compare the volume of XDNe

N with the feasible set
of its nominal counterpart, i.e. ξi = 0 ∀i = 1, ..N , recovering
the approach in [8], and observe that the volume of the region
of attraction increases by a factor of ≈ 64.4.

b) Large-scale thermal application: Based on the model
used in [16], we apply the iterative learning-based approach
to a larger-scale constrained server-cooling example with 64
dynamically coupled states and 64 inputs. Thereby, we ini-
tialize the terminal set with a single trajectory, where we start
from a random initial condition and simulate the system under
application of an input saturated LQR controller. We select an
MPC planning horizon N = 3 and data horizon N̄ = 50 ac-
cording to Section V, resulting in performance improvements
as given in Table I. Compared to a nearly optimal controller,
represented by an MPC using an overall planning horizon of
N = 53, the learning-based formulation yields 99.995% of
the closed-loop performance after 3 learning episodes, with a
≈ 12 times faster solve time of the MPC problem.

VII. CONCLUSION

In this paper, we introduced a soft constrained MPC for-
mulation in the form of a quadratic programming problem,
supporting polytopic terminal sets in H- and V-representation
while preserving desirable asymptotic stability guarantees.
The approach allows to use a maximal terminal set and can
be combined with recent learning-based MPC techniques to
improve the performance using available system trajectories
that potentially violate the state constraints.
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