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Summary

While model predictive control (MPC) methods have proven their efficacy when
applied to systems with safety specifications and physical limitations, their perfor-
mance heavily relies on an accurate predictionmodel. As a consequence, a significant
effort in the design of MPC controllers is dedicated to the modeling part and often
requires advanced physical expertise. In order to facilitate the controller design,
we present an MPC scheme supporting nonlinear learning-based prediction mod-
els, i.e. data-driven models with probabilistic parameter uncertainties. A tube-based
MPC formulation in combination with an additional implicit state and input con-
straint forces the closed-loop system to be operated in domains of sufficient model
confidence, thereby ensuring asymptotic stability and constraint satisfaction at a
pre-specified level of probability. Furthermore, by relying on tube-based MPC con-
cepts, the proposed learning-based MPC formulation offers a general framework
for addressing different problem classes, such as economic MPC, while providing a
general interface to probabilistic prediction models based, e.g., on Bayesian regres-
sion or Gaussian processes. A design procedure is proposed for approximately linear
systems and the efficiency of the method is illustrated using numerical examples.
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1 INTRODUCTION

Over the past decades, model predictive control methods have been established as the standard for controlling safety-critical
dynamical systems with limited input authority across various industries.1,2 One of its main benefits is the possibility to ensure
closed-loop constraint satisfaction in a principled way while approximately maximizing a given objective that specifies the
control task at hand. This is achieved through solving a finite-time optimal control problem at each sampling time in a receding
horizon fashion, using amodel of the true system dynamics to simultaneously predict and optimize the performance of the system
in real-time. As a consequence, the quality of model predictive controllers heavily relies on the accuracy of the prediction model.
At the same time, the effort needed for manually obtaining a prediction model by first-principles and previous experiments
increases drastically with the desired level of prediction accuracy. In industrial applications, this often results in high cost for
the development and maintenance of model predictive controllers or in the use of suboptimal prediction models that are often
subject to a significant amount of model uncertainty, which can cause performance degeneration and safety violations.
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To explicitly cope with these uncertainties, model predictive control techniques were extended to support uncertain and
stochastic prediction models, resulting in a robust or probabilistic closed-loop analysis. While these approaches can cope with
model inaccuracies, they typically still require a control engineer to manually derive a sound uncertainty description of the
prediction model and to select and execute a suitable model predictive control synthesis. As a consequence, the resulting closed-
loop performance depends largely on the offline design phase, in which a-priori assumptions on the model uncertainty can lead
to conservatism.
Increasing availability of system data, computation and sensing lead to a growing interest in machine learning techniques,

which offer sophisticated tools for highly automated inference of prediction models from data, resulting in novel learning-based
model predictive controllers.3,4,5,6,7 On the one hand, even though some of these controllers have shown to perform well in prac-
tice,8,5,9 they do not provide rigorous safety or closed-loop performance certificates. On the other hand, there are attempts to
define novel prediction models10,11 compatible with existing robust model predictive control methods that offer desired closed-
loop properties, although their performance have not yet been demonstrated in practice or compared with established machine
learning methods. The goal of this paper is to combine the advantages of both research directions by providing rigorous proba-
bilistic safety guarantees using prediction models that are obtained through successful and highly automated machine learning
tools.

1.1 Contributions
We extend a previously proposed framework12 for safe learning-based model predictive control in two ways to significantly
reduce conservatism. Firstly, we avoid the robust treatment of all possible model uncertainties by using nonlinear probabilistic
prediction models. Secondly, a large portion of conservatism originates from a global treatment of the worst-case model uncer-
tainty across the entire state and input space, which we reduce by leveraging probabilistic state and input dependent uncertainty
information. The basic mechanism is to extend well-known tube-based model predictive control concepts with an additional
constraint that forces predictions to a subset of the admissible state and input space with high model confidence at a desired level
of probability while maintaining computational efficiency of the resulting MPC problem. The additional constraint is defined
through a so-called set-valued model confidence map, describing state and input dependent model uncertainties, such that the
proposed model predictive controller can be interfaced with any probabilistic prediction model and provides closed-loop chance
constraint satisfaction. At the same time, by using tube-based model predictive control concepts at the core of the method, the
scheme allows for direct adaptations to different problem settings including standard set-point or advanced economic control as
two important examples. While the prediction model can be computed based on available data using machine learning tools, we
present an automated procedure to compute the required components of the proposed model predictive control method based
on only a few tuning parameters for the relevant case of approximately linear systems. The method and its design procedure are
illustrated using numerical simulations for an approximately linear 10-dimensional quadrotor system and a nonlinear economic
control problem.

1.2 Related work
The use of learning-based prediction models in model predictive control was first proposed by Aswani et al. (2013)12 using
a tube-based approach, which requires a global bound on the prediction error and provides provable guarantees in terms of
constraint satisfaction. Practical demonstrations of the method were presented in a number of subsequent results.13,14,15,16 In
addition, learning-based prediction models were developed that provide the required global model error bounds, for example
based on Lipschitz interpolation17 and Kinky inference,10,18 leading to variations of the original learning-basedmodel predictive
control scheme.19 One significant limitation of these approaches originates from the underlying assumption that the prediction
models cover all possible model errors with probability one. Furthermore, even if these models provide state and input dependent
uncertainty estimates, most of the learning-based model predictive control frameworks presented so far did not take advantage
of them and conservatively have considered a global worst-case model error over the whole state and input space. We overcome
these limitations by supporting probabilistic model estimates, allowing to consider model errors at a desired probability level
and by enabling the use of state and input dependent uncertainty information in the model predictive controller.
Another class of methods that originate from robust model predictive control ideas is based on parametric set-membership

model estimation techniques.20,21,22,23,24,11,25,26 The idea is to iteratively rule out impossible model parameters successively over
time and to explicitly take care of the remaining uncertainty in the online model predictive control problem.While these methods
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explicitly take online updates of the model into account in terms of recursive feasibility, they perform a conservative robust
treatment of uncertainties with probability one and do not allow for using established stochastic methods frommachine learning.
Different from robust approaches, stochastic model predictive control techniques that use probabilistic uncertainty information

to reduce conservatism were investigated,27 which among others can support learning-based prediction models. However, their
theoretical analysis tends to be rather challenging, even for simple linear stochastic prediction models, while they are at the
same time often difficult to implement, resulting in approximate implementations3 that work well in practice8,4 but are lacking
theoretical statements about closed-loop properties. A relatively simple alternative is based on Monte Carlo simulations or
scenario-based optimization techniques28,29, allowing to iteratively select parameters of the MPC problem to achieve a desired
probability of chance-constraint satisfaction. These results are, however, limited to linear systems or fixed initial conditions.
The goal of this paper is therefore to combine the benefits of purely robust and fully stochastic techniques into a novel

model predictive control scheme, that treats probabilistic model uncertainties robust in probability by design, thereby being less
conservative than robust approaches, while providing rigorous theoretical guarantees. Different from previous work7,6 using
a similar concept, our approach is scalable to larger dimensional systems by avoiding the need for expensive explicit off-line
computations and it can be easily adopted to different problem classes such as economic control by relying on a static tube-based
prediction mechanism.
Conceptually, the proposed techniques are related to stochastic and learning-based predictive control techniques30,31,32 that

are used for enhancing reinforcement learning algorithms with safety certificates and which are also centred around the idea of
treating model uncertainties robustly in probability to provide rigorous closed-loop guarantees in terms of constraint satisfaction.
Different from these approaches, we rely on a standard tube-based model predictive control formulation, enabling the use of
established model predictive control techniques to obtain closed-loop guarantees together with a principled design procedure.
Finally, note that while stochastic safety verification techniques33,34 can be used to certify, e.g., nominal or robust MPCmethods
in the presence of stochastic uncertainties, our goal is to provide a principled controller design that guarantees the desired level
of safety by construction.

Notation and definitions
The distance between a vector x ∈ ℝn and a set  ⊆ ℝn is defined as ‖x‖ ∶= infa∈ ‖x − a‖. A ball with radius � > 0
is denoted as  (�) = {x ∈ ℝ| ‖x‖ ≤ �} and the radius of an outer bounding ball of a bounded set  ⊂ ℝn as diam () ∶=
maxx∈ ‖x‖. The Minkowski sum of two sets 1,2 ⊂ ℝn is denoted by 1 ⊕2 ∶= {a1 + a2|a1 ∈ 1, a2 ∈ 2} and the
Pontryagin set difference by1⊖2 ∶= {a1 ∈ ℝn

|a1+a2 ∈ 1, ∀a2 ∈ 2}. An affine image of a set1 ⊆ ℝn under x → Kx
is defined as K1 ∶= {Kx|x ∈ 1}. The convex hull of a set of vectors {xi}Ni=0 with xi ∈ ℝn is denoted by conv({xi}Ni=0). We
use ℙ(E) for the probability of an event E and indicate with x ∼ x a random variable x of distributionx. For time-dependent
quantities x(k) with time k = 0, 1, .., we use the notation x+ ∶= x(k + 1) and x ∶= x(k) when convenient. Optimal solutions to
an optimization problem will be denoted by an asterisk, e.g., x∗ = argminx∈ℝ f (x).

2 PROBLEM STATEMENT

We consider the problem of controlling deterministic non-linear systems that can be modelled as

x(k + 1) = f (x(k), u(k); �), k ∈ ℕ+, (1)

with x(k) ∈ ℝn, u(k) ∈ ℝm, initial condition x(0) = x0, and true system parameters � ∈ ℝn� that are assumed to be unknown
but constant over time. We assume a distributional belief over the true system parameters � of the form

� ∼ � , with mean �̄ ∶= E [�] , (2)

inferred for example using machine learning techniques based on imperfect system data given as

D ∶= {(x(i + 1) + �(i), x(i), u(i))}ND
i=1 with �(i) ∼ � zero mean i.i.d. noise. (3)

Remark 1. System models of the form (1) can be obtained using, e.g., Bayesian regression35. While we focus on parametric
models for the sake of clarity, the presented methods can directly be applied together with non-parametric estimation techniques
such as Gaussian Processes36 if the true system model is sampled from a reproducing kernel hilbert space or the state and input
domain is bounded,37,38 see also Section 4.1 for further details.
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The goal is to develop a learning-based controller that is based on a model of the form (1), (2) and that minimizes the expected
sum over stage cost functions up to a possibly infinite horizon N̄ given by

J = E�
⎡

⎢

⎢

⎣

N̄
∑

k=0
l(x(k), u(k))

⎤

⎥

⎥

⎦

, (4)

where the expected value is taken with respect to the current distributional belief over the true system parameter �. While
minimizing (4), the controller additionally needs to ensure that the closed-loop system satisfies chance constraints on the system
states and inputs, i.e.

ℙ(For all k = 1, 2, .., N̄ ∶ x(k) ∈ X, u(k) ∈ U) ≥ p (5)

where p denotes the desired probability of safety, i.e. constraint satisfaction, X ⊆ ℝn typically denotes safety-critical state
constraints, and U ⊆ ℝm represents physical input limitations.

3 NONLINEAR LEARNING-BASED MODEL PREDICTIVE CONTROL

In this section, we show how conventional tube-based MPC formulations that provide robustness against additive disturbances
can be used to leverage learning-based models in a safe manner. This is achieved by exploiting probabilistic state and input
dependent uncertainty information to reduce the overall conservatism of the controller compared with a classical formulation.
To this end we briefly introduce the tube-based MPC formulation in Section 3.1 and highlight its main limitation in case of
probabilistic parameter uncertainties according to (1) and (2) in Section 3.2. We then introduce an efficient state and input
dependent uncertainty description supporting probabilistic parameter uncertainties in Section 3.3 together with an extension of
standard tube-based MPC methods that allows to exploit nonlinear learned system models.

3.1 Background: Tube-based model predictive control
The system model and the nominal prediction model typically considered in tube-based MPC are given by

x(k + 1) = f (x(k), u(k)) +w(k) and z(k + 1) = f (z(k), v(k)), (6)

where the disturbance w(k) is assumed to lie in a compact disturbance set  , which is constant for all times k ∈ ℕ and z(k)
and v(k) are the nominal system states and inputs. A common task is to steer an initial state x(0) to a neighborhood of a desired
equilibrium state zs of the nominal system. We consider the origin as a set point, i.e. zs = 0 with corresponding zero nominal
input vs = 0, for notational simplicity, but the results directly extend to non-zero set points. The resulting trajectory is required
to robustly satisfy state and input constraints of the form x(k) ∈ X and u(k) ∈ U, i.e. for all admissible disturbance sequences
{w(k)}. In tube-based MPC, the MPC problem is formulated using the nominal system dynamics with respect to tightened state
and input constraints and by compensating resulting closed-loop errors defined as e(k) ∶= x(k) − z(k) by a trajectory tracking
feedback controller of the form �Ω ∶ U×X×X → U in addition to the nominal system inputs v(k), i.e. u(k) = �Ω(v(k), x(k), z(k)).
An appropriate tightening of the state and input constraints for the nominal system is determined in a principled way, by defining
a tube of the form z(k)⊕ Ω with Ω ⊂ ℝn, which robustly contains the true system state x(k) around z(k) under application of
�Ω as follows.

Definition 1 (Robust positive invariant error set39). A set Ω is robust positive invariant (RPI) for the error system e(k + 1) =
x(k + 1) − z(k + 1) if for all x(k), z(k) ∈ X with e(k) ∈ Ω, v(k) ∈ U, and w(k) ∈  it holds that e(k + 1) ∈ Ω with
u(k) = �Ω(v(k), x(k), z(k)) ∈ U.

Using the set Ω, we can explicitly specify the required state and input constraint tightening as

ℤ̄ ∶= {z ∈ X, v ∈ U | (x, �Ω(v, x, z)) ∈ X × U ∀x ∈ z ⊕Ω}, (7)

ensuring that for all k ≥ 0 the condition (z(k), v(k)) ∈ ℤ̄ implies by construction that x(k) ∈ X and u(k) ∈ U holds under
application of u(k) = �Ω(v(k), x(k), z(k)).
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Taking into account the tightened constraints, the resulting tube-based MPC problem takes the form

min
{vi|k}

lf (zN|k) +
N−1
∑

i=0
l(zi|k, vi|k) (8a)

s.t. for all i = 1, 2, .., N − 1 ∶
x(k) ∈ z0|k ⊕Ω (8b)
zi+1|k = f (zi|k, vi|k), (8c)
(zi|k, vi|k) ∈ ℤ̄, (8d)
zN|k ∈ f , (8e)

where we denote nominal states and inputs predicted at time k for i time steps into the future as zi|k and vi|k. The additional
terminal cost lf on the last predicted state together with the imposed terminal constraint (8e) w.r.t. the target set f is selected
to ensure convergence of the nominal system to the origin40. The initial condition (8b) enforces that the tube at the initial
time step z0|k ⊕ Ω contains the system state x(k), thereby introducing feedback w.r.t the real system state in closed-loop. The
tube-based MPC control input is defined as

�MPC(x(k)) = �Ω
(

v∗0|k, x(k), z
∗
0|k

)

(9)

where v∗i|k and z∗i|k denote the optimal solution of (8) at time step k. In the following, we summarize common assumptions
under which we obtain recursive feasibility of (8) together with robust closed-loop constraint satisfaction as well as convergence
guarantees of the system state to a neighborbood around the origin.41,42,39

Assumption 1. A control law (9) with a corresponding RPI set Ω ⊂ X according to Definition 1 is available.

Assumption 2. The stage cost function l is positive definite w.r.t. the origin and continuous, X and U are compact sets, and
there exists a set f ⊆ ℝn, a feedback law �f ∶ f → ℝm, and a positive definite terminal cost function lf ∶ f → ℝ+, such
that for all z ∈ f it holds i) (f (z, �f (z)), �f (z)) ∈ ℤ̄, ii) f (z, �f (z)) ∈ f , and iii) lf (f (z, �f (z))) − lf (z) ≤ −l(z, �f (z)).

Proposition 1. Consider system (6) and let Assumption 1 and 2 hold. If (8) is feasible for x(0), then under application of the
tube-based model predictive control law (9) it follows for all future time steps k ∈ ℕ that (8) is feasible, x(k) ∈ X, u(k) ∈ U, as
well as limk→∞ ‖x(k)‖Ω = 0.

3.2 Conservatism of global uncertainty bounds in case of learning-based prediction models

While tube-based MPC approaches provide an efficient and simple approach to
compensate model uncertainties, learning-based model inference that results in
parametric uncertainties such as (1), (2) is often difficult to handle in this frame-
work due to possibly large or unbounded state and input dependent uncertainties
w(z, u) = f (z, v; �)−f (z, v; �̄), see Figure 1. The resulting large uniform uncer-
tainty bounds over the state and input space typically lead to a larger diameter
of the tube Ω and therefore often render tube-based MPC infeasible. This is of
particular relevance if some regions of the state and input space are poorly cov-
ered by available data, as it is often the case for larger-scale systems. An approach
to keep the additive disturbance reasonably small is to manually introduce aux-
iliary state constraints that keep the system state in a domain of low model
uncertainty. While the computation of such auxiliary state constraint sets can be
automated for small scale systems7, drawbacks are the need for re-designing the
auxiliary state constraint every time the model is updated with new data and their
limited scalability, similarly as for explicit MPC techniques43.

z0

f (z) = �̄z

w(z)

FIGURE 1 Parametric uncertainty accord-
ing to (1) and (2) in case of a scalar linear
system f (x; �) = �x with expected lin-
ear model f (z; �̄) = �̄z in blue together
with state dependent uncertainties w(z) =
(� − �̄)z between the two dotted red lines.

This paper presents an alternative approach to limit planning to confident subsets of the state space, which mitigates these
limitations.
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3.3 Learning-based MPC through efficient planning in confident subsets
In this section we present a computationally efficient approach to restrict predicted state and input sequences in (8) to subsets
with high model confidence, i.e. regions for which the admissible model error w(zi|k, vi|k) = f (zi|k, vi|k; �) − f (zi|k, vi|k; �̄) is
contained in a pre-specified additive disturbance set  ⊂  at desired probability level p according to (5) without explicitly
pre-computing the allowed domain. Since the size of the RPI setΩ is strongly related to the size of, we thus enable to trade off
conservatism induced by the constraint tightening (7) via the choice of, against the locally admissible uncertainty magnitude
and probability of safety. This trade-off can be efficiently incorporated into a design procedure as shown in Section 4.2.
Becausew(zi|k, vi|k) is uncertain and we cannot simply imposew(zi|k, vi|k) ∈  as an additional constraint to (8a), we utilize

analytic state and input dependent model confidence estimatesp (x, u) such thatw(x, u) ∈ p (x, u) holds at probability level
p . Such a model confidence estimate is available for relevant system descriptions of the form (1), (2) and can be seen as a
possibly general interface between different machine learning techniques and tube-based MPC schemes by incorporating an
additional constraint of the form ‘p (zi|k, vi|k) ⊆ ’ into the tube-based MPC problem (8). More formally:

Definition 2 (Set-valued model confidence map). A set-valued map p (., .) mapping states and inputs from X × U to subsets
of  with  ⊂ ℝn is said to be a set-valued model confidence map associated with (1), (2), for a given �̄ ∈ ℝq at probability
level p > 0 if, at probability greater or equal to p , it holds for all k ∈ ℕ, x(k) ∈ X, and u(k) ∈ U that

x(k + 1) − f (x(k), u(k), �̄) ∈ p (x(k), u(k)). (10)

A discussion together with an example for obtaining such confidence maps p(x, u) is provided in Section 4.1. While
Definition 2 principally allows to guide the closed-loop system within confident regions of the state and input space, it does
not suffice to require ‘p (zi|k, vi|k) ⊆ ’ as an additional constraint in the nominal MPC problem (8), since p (z

∗
1|k, v

∗
1|k) ⊆

 ⇍⇒ p (x(k + 1), u(k + 1)) ⊆  under application of (9) because (z∗0|k, v
∗
0|k) ≠ (x(k), u(k)) in general. Similarly as for the

case of state and input constraint satisfaction, we therefore also tighten the set-valued confidence constraint as follows, which
will play a key role for recursive feasibility.

Definition 3 (Tightened confidence set). Consider system (1), (2) and a control law (9) with a corresponding RPI set Ω ⊂ X
according to Definition 1. A set ̄ ⊆  is a tightened confidence set associated with a set-valued model confidence mapp (., .)
if for all (z, v) ∈ ℤ̄, x ∈ z ⊕Ω it holds

p (z, v) ⊆ ̄ ⇒ p (x, �Ω(v, x, z)) ⊆ . (11)

In Section 4 we show that for a sufficiently small local model uncertainty together with stabilizability of the linearization of
x(k + 1) = f (x(k), u(k); �̄) around x = 0 and u = 0 one can always find a model error set  such that a non-empty tightened
model error set ̄ (11) exists locally. Using the notion of set-valued model confidence maps from Definition 2 together with a
tightened confidence set according to Definition 3 we can state the resulting additional constraint to conventional tube-based
MPC schemes, supporting probabilistic state and input dependent uncertainty estimates as

min
{vi|k}

lf (zN|k) +
N−1
∑

i=0
l(zi|k, vi|k) (12a)

s.t. for all i ∈ [0,N−1] ∶
(8b) − (8e) (12b)
p (zi|k, vi|k) ⊆ ̄, (12c)

where (12c) can be efficiently implemented for several learning-based prediction models, see Section 4.1. Application of the
resulting MPC control law (9) based on the modified problem (12) provides the following closed-loop system properties.

Theorem 1. Consider system (1), (2), together with a set-valued model confidence map according to Definition 2 and let
Assumption 1 hold w.r.t. a pre-specified additive disturbance set  = . If ̄ is a tightened confidence set according to
Definition 3 and if Assumption 2 holds with the additional requirement that for all z ∈ Xf it follows that p (z, �f (z)) ⊆ ̄,
then under application of the tube-based model predictive control law (9), it holds jointly for all future time steps k ∈ ℕ at
probability level p that x(k) ∈ X, u(k) ∈ U and limk→∞ ‖x(k)‖Ω = 0.
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Proof. To streamline notation, define d(k) ∶= f (x(k), u(k); �) − f (x(k), u(k); �̄). We show recursive feasibility based on the
relation

ℙ(∀k ∈ ℕ+ ∶ (12) is feasible) (13)
≥ℙ(∀k ∈ ℕ+ ∶ (12) is feasible, d(k) ∈ p (x(k), u(k)))
≥ℙ(∀k ∈ ℕ+ ∶ (12) is feasible|d(k) ∈ p (x(k), u(k)))ℙ(∀k ∈ ℕ+ ∶ d(k) ∈ p (x(k), u(k))). (14)

Since ℙ(∀k ∈ ℕ+ ∶ d(k) ∈ p (x(k), u(k))) ≥ p by assumption due to Definition 2, relation (14) enables us to prove (13) by
establishing

ℙ(∀k ∈ ℕ+ ∶ (12) is feasible|d(k) ∈ p (x(k), u(k))) = 1. (15)

Similar to the standard tube-based model predictive control proof, we show (15) recursively by induction, i.e. if (12) is feasible
at time k, it will be feasible at time k + 1. From feasibility at time k we have from (8b) that x(k) ∈ z∗0|k ⊕ Ω and together
with (12c) it follows from Definition 3 that p (x, �Ω(v

∗
0|k, x(k), z

∗
0|k)) ⊆ . Under the condition in (15) we therefore conclude

that d(k) ∈ . Since Ω is by assumption RPI for the error dynamics e(k + 1) = f (x(k), �Ω(v∗0|k, x(k), z
∗
0|k)) − z

∗
1|k, we can

further establish that e(k + 1) ∈ Ω and x(k + 1) ∈ z∗1|k ⊕ Ω. From here it follows from Assumption 2 in combination with
the additional assumption ∀z ∈ Xf ⇒ p (z, �f (z)) ⊆ ̄ that we can leverage the standard candidate input sequence given
by V (k + 1) ∶= (v∗1|k, .., v

∗
N|k, �f (z

∗
N|k)) to construct a feasible nominal candidate sequence for (12) at time k + 1. Hence,

we have shown (15), implying recursive feasibility at probability level p , which immediately implies satisfaction of chance
constraints (5) and asymptotic convergence limk→∞ ‖x(k)‖Ω = 0 as in standard tube-based MPC41.

Model update without re-design of the MPC problem
One of the main advantages of learning-based control is the possibility to leverage available closed-loop system data in order to
obtain a more accurate system model, leading to improved closed-loop system performance. In particular, it would be desirable
to perform updates of the system model based on collected data during closed-loop system operation in order to subsequently
reduce conservatism of the MPC controller. The proposed implicit formulation of the requirement to stay within confident
subsets according to (12c) allows us to derive online verifiable sufficient conditions on an updated set-valued model confidence
map according to Definition 2 that preserve the closed-loop properties of Theorem 1. Thereby the tube-MPC formulation does
not have to be re-designed, if collected data leads to a more confident model estimate in the sense that for all x ∈ X, u ∈ U we
have that+

p
(x, u) ⊆ p (x, u) and that the tightened confidence set ̄ is still valid for an updated set-valued model confidence

map +
p
.

Corollary 1. Let +
p

be an updated set-valued model confidence map according to Definition 2 and let the assumptions in
Theorem 1 be satisfied. If it holds for all (z, v) ∈ ℤ̄, x ∈ z ⊕ Ω that i) +

p
(z, v) ⊆ p (z, v) and ii) +

p
(z, v) ⊆ ̄ ⇒

+
p
(x, �Ω(x, z, v)) ⊆ , then choosing p ∶= +

p
satisfies the assumptions of Theorem 1.

Note that the conditions of assumptions of Corollary 1 can be verified by solving a nonlinear optimization problem, i.e. by
searching for particular z, v, x that violate i) or ii), see Appendix B.

Remark 2. For substantial model updates that also require a different mean estimated parameter �̄, one needs to recompute the
RPI set, terminal set, and terminal cost computations. The updated model predictive control problem would then have to be
solved in parallel until initial feasibility, allowing to switch to the updated controller.

A framework for uncertain parametric prediction models and diverse control tasks
By relying on a deterministic nominal prediction model (e.g. expected estimate or maximum-a-posteriori estimate �̄ of �) in
combination with the set-valued model confidence map as uncertainty measure for planning in confident subsets of the state and
input space, the proposed approach can directly make use of different classes of probabilistic prediction models as illustrated
in Figure 2 and as explained for the special case of Bayesian regression in Section 4.1 in more detail. Furthermore, the close
relation to standard tube-based MPC formulations offers easy adaptation of the concept to different problem settings such as
trajectory tracking and economic control44,39 via the choice of the stage cost, the terminal cost, and the terminal constraint. It is
important to note that these compontents only require the nominal model and the set-valued model confidence set as illustrated
in Figure 2 and in the numerical example in Section 5.2, where economic steady-state control is considered.
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Learning-based model predictive controller

Linear Bayesian regression Gaussian Processes Set-membership techniques ...

Mean function + Set-valued confidence map

Provides prediction model and confident sub-sets

Trajectory tracking

Stage cost, terminal cost, and terminal constraint

Economic steady-stateSet-point stabilization Economic periodic orbit

Provides controller configuration with performance guarantees

FIGURE 2 The proposed learning-based model predictive controller can be seen as a modular framework in terms of dif-
ferent prediction models (top) and available model predictive control configurations (bottom), each specialized to a different
application.

Remark 3. There are a number of recently proposed robust, nonlinear model predictive control schemes45,46,47 that could be
adopted to support state and input dependent uncertainty estimates robustly in probability by using the set-valued confidence set
according to Definition 2 as well. However, since these methods differ from the standard tube-based model predictive control
framework, more effort would generally be needed to adapt these schemes beyond set-point stabilization towards, e.g., economic
steady-state or periodic operation, which build on existing tube-based approaches39,48.

4 LEARNING-BASED MODEL PREDICTIVE CONTROLLER SYNTHESIS

In this section, we provide principled synthesis techniques for the proposed MPC scheme through a learning-based computation
of the prediction model (1), (2) together with a set-valued model confidence map according to Definition 2 for the important
case of Bayesian regression in Section 4.1. Furthermore, we derive a corresponding tube and tube controller computation as
required by Assumption 1 with a confidence set tightening in compliance with Definition 3 in Section 4.2, and outline terminal
cost and terminal set computation methods in Section 4.3.

4.1 Learning-based predictions and set-valued model confidence maps using Bayesian inference
A simple, yet powerful Bayesian regression approach is based on parametrized models of the form

f (x, u; �) = �⊤�(x, u), � ∈ ℝn�×n (16)

consisting of a nonlinear transformation into feature space via � ∶ ℝn+m → ℝn� , which are linearly combined via the param-
eters �. Bayesian regression offers great model flexibility by choosing � for example49,50 to be a collection of higher-order
polynomials, spline functions, radial basis functions centered around data points, or even feed-forward neural nets.
Due to being linear in the unknown parameters, one can efficiently obtain a parameter estimate of the form (2) together with

a corresponding set-valued model confidence map according to Definition 2 based on a Gaussian parameter prior distribution
coli(�) ∼ ℕ(��i ,Σ

�
i ) together with data D (3) affected by Gaussian i.i.d. noise � = ℕ(0, In�2s ). Specifically, the posterior

distribution �|D over parameters � conditioned on data D can be obtained as36,49

ℙ(coli(�)|D) = ℕ
(

��|Di , Σ�|Di
)

, ��|Di = Σ�|Di
(

�−2s X
⊤coli(Y ) + (Σ�i )

−1��i
)

, Σ�|Di =
(

�−2s X
⊤X + (Σ�i )

−1)−1 (17)
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with data matrices X and Y defined as rowj(X) = �(xj , uj)⊤ and rowj(Y ) = x⊤j+1. Propagation of the posterior distribution
�|D through the model (16) then yields the posterior predictive distribution of the model f at locations (x, u) given by36,49

fi(x, u; �) ∼ ℕ(�(x, u)⊤��|Di , �(x, u)⊤Σ�|Di �(x, u)). (18)

The corresponding nominal mean prediction model can then, e.g., be selected as fi(x, u; �̄) = �(x, u)⊤��|Di and the set-valued
model confidence map according to Definition 2, describing deviations from f (x, u; �̄) at probability level p , can be defined
using the chi-squared distribution51 �2n (p ) as

p (x, u) = {d ∈ ℝn
|d⊤Σ−1(x, u)d ≤ �2n (p )} with Σ(x, u) = diag([�(x, u)

⊤Σ�|Di �(x, u)]i=1,..,n). (19)

It is important to note that in case of a normally distributed prior distribution as considered here, selecting p = 1 yields an
unbounded set-valued model confidence map, meaning that a robust treatment is not possible for unbounded priors on �.
Given the closed-form expressions for the mean function and set-valued
model confidence map (19), we turn our attention to efficient ways of imple-
menting the tightened set-valued model confidence map constraint (12c). We
exemplify the procedure by selecting a hyper rectangular admissible distur-
bance set  ∶= conv({djej}j=1,..,n ∪ {−djej}j=1,..,n) where ej are the basis
vectors, i.e. [ej]j = 1, [ej]i,i≠j = 0, and dj are the corresponding scal-
ings. We define a corresponding tightened version as ̄ = (1 − 
) where

 > 0 is selected sufficiently small according to Definition 3 as described in
Section 4.2. In order to implement p (z, v) ⊆ ̄ in the MPC problem (12),
we enforce the semi-axis ofp (z, v) to be smaller or equal to the respective
unit vector length (1 − 
)di as illustrated in Figure 3, resulting in

�(zi|k, vi|k)⊤Σ
�|D
i �(zi|k, vi|k)�2n (p ) ≤ ((1 − 
)dj)

2, j = 1, .., n, (20)

representing the resulting set-valued model confidence map constraint (12c).
Note that (20) is convex, if [�(., .)]i are convex, e.g. �(x, u) = [x⊤, u⊤]⊤.

z1

z2

0
p (z, v)

̄ 

FIGURE 3 Illustration of the ellipsoidal set-
valued model confidence set p (z, v) in
blue for a system with two dimensional state
space, which is constrained inside the tight-
ened version ̄ (dashed red) of the admis-
sible model error  (red), i.e. p (z, v) ⊆
̄.

Remark 4. While we focus on parametric models of the form (1), it is similarly possible to derive a set-valued model confidence
map for non-parametric learning-based predictions. In particular, in case of Gaussian process regression36, the corresponding
set-valued confidence map takes the same form as (19), where �2(p ) needs to be scaled by an additional factor as described by
Srinivas et al. (2012)37, which was as used before in the learning-based model predictive control context.6

Remark 5. While we focus on being robust against parametric uncertainties in this paper, bounded additive disturbances of the
form x(k+1) = f (x(k), u(k); �)+w(k) withw(k) ∈ can additionally be considered in the set-valued model confidence map
by re-defining 

p
(x, u) ∶= p (x, u)⊕

4.2 Tube synthesis and tightened confidence sets for approximately linear systems
We exemplify a tube synthesis procedure by considering systems of the form (1), which can be approximately described by a
linear system model

x(k + 1) = Ax(k) + Bu(k) + d(k) (21)

with A ∶= )f
)x
|

|

|0
, B ∶= )f

)u
|

|

|0
, and d(k) ∈ ps(x(k), u(k)) where ps is the corresponding set-valued model confidence map at

probability level ps as specified in Definition 2. Note that models of the form (16) can easily be turned into (21) by defining
A,B
p
(z, v) ∶= (f (z, u; �̄) − Az − Bv)⊕p (z, v) as corresponding set-valued model confidence map.

To enable an efficient synthesis for the auxiliary controller �Ω, the RPI setΩ, and the locally admissible model uncertainty set
, as required for the model predictive controller (12), we restrict ourselves to a linear auxiliary tracking controller that results
in the well-known standard tube-based model predictive control input40 u(k) = �Ω(v∗0|k, x(k), z

∗
0|k) = v

∗
0|k +K(x(k) − z

∗
0|k) with

K ∈ ℝm×n such that all eigenvalues of A + BK are strictly inside the unit circle and with v∗0|k, z
∗
0|k being the optimal solution

to the learning-based model predictive control problem (12) at time k. The resulting error dynamics in case of a linear nominal
model (21) reads41

e(k + 1) = (A + BK)e(k) + d(k). (22)
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Next, we exploit that constraint (12c) enables us to adjust the considered model uncertainty by planning in confident sub-
sets for controller synthesis. In particular, by extending the design procedure for robust tube MPC by Limon et al. (2008),52
we present one optimization problem that allows to simultaneously synthesize the RPI set Ω, auxiliary control law K , and
locally admissible model error set  for (22) using convex optimization. Specifically, for polytopic state and input constraints
X ∶= {x ∈ ℝn

|Axx ≤ bx} and U ∶= {u ∈ ℝm
|Auu ≤ bu} in (5), the goal is to impose a maximum amount of constraint

tightening of the form ℤ̄ = {X⊖Ω} × {U⊖KΩ}. By parametrizing the resulting tightened state and input constraints as

X⊖Ω ⊇ {x ∈ ℝn
|Axx ≤ (1 − 
̄x)bx} and U⊖KΩ ⊇ {u ∈ ℝm

|Auu ≤ (1 − 
̄u)bu}, (23)

we can impose a minimum size of the tightened constraints through bounds on 
x and 
u, which directly affects the size of the
feasible set of the model predictive control problem (12) and admissible disturbance set. More precisely, given the minimum
size of the tightened constraint sets (23), we compute Ω and K to maximize the locally admissible model uncertainty set and
thereby make constraint (12c) as least restrictive as possible.
In order to enable scalablity to larger scale systems, we restrict Ω to an ellipsoidal set of the form Ω ∶= {e ∈ ℝn

|e⊤Pe ≤ 1}
with optimization variable P ∈ ℝn×n that must be positive definite. The form of the admissible uncertainty set  is chosen to
be a scaled polytope = �̃ with pre-defined shape given by ̃ ∶= conv({dj}

n̃
i=1) and variable scaling � ≥ 0. A natural choice

for stabilization tasks is to select ̃ such that constraint (12c) is at least approximately fulfilled at the origin, i.e.

̃ ⊇ ps(0, 0), � ≥ 1. (24)

The resulting synthesis problem is given by the following optimization problem with E = P −1 ∈ ℝn and Y = KE ∈ ℝm×n

max
E,Y ,�,�

� (25a)

s.t. � ≥ 1, � ≥ 0, E ⪰ 0 (25b)

⎛

⎜

⎜

⎝

�E 0 EA⊤ + Y ⊤B
0 1 − � �d⊤j

AE + BY �dj E

⎞

⎟

⎟

⎠

⪰ 0, ∀j = 1, .., n̃ (25c)

(


̄2xb
2
x,j Ax,jE

EA⊤x,j E

)

⪰ 0, ∀j = 1, .., nx (25d)
(


̄2u b
2
u,j Au,jY

Y ⊤A⊤u,j E

)

⪰ 0, ∀j = 1, .., nu, (25e)

the solution of which provides an RPI set for the error system (22) given by Ω∗ ∶= {e|e⊤P ∗e ≤ 1}, P ∗ = E∗−1, a state-
feedback gainK∗ = Y ∗E∗−1 with corresponding constraint tightening, which fulfills (23), as well as a possibly large admissible
disturbance set ∗ = �∗̃. In (25), the previously introduced representations of Ω and  are used to reformulate the robust
invariance condition ∀e(k) ∈ Ω, d(k) ∈  ⇒ e(k + 1) ∈ Ω via constraint (25c), obtained by repeated application of the Schur
complement53 and the S-Lemma54. Note that constraint (25c) is bilinear only in the scalar parameter � ≥ 0 introduced by the
S-Lemma, which needs to be contained in the interval [0, 1]. This allows for efficient gridding of �, resulting in a convex linear
matrix inequality for each grid point. The minimum size requirement on the tightened constraints (23) is represented by the
convex linear matrix inequalities (25d) and (25e), see e.g. Boyd (1994)55, Section 5.2.2. While we omit a detailed proof, similar
derivations can also be found in Limon et. al. (2008).52
Finally, it is important to note that even if (24) holds, = �∗̃with �∗ ≥ 1 does not yet guarantee a valid tightening according

to Definition 3. This is due to the fact that even for z∗0|k = 0 and v
∗
0|k = 0 we have ps(e, Ke) ≠ ps(0, 0) for e ∈ Ω. However,

ifp is Lipschitz continuous under the Hausdorff metric (Appendix A, Definition 4) with Lipschitz constant Lp
, a sufficient

condition for a feasible tightened set-valued model confidence map constraint (12c) for z∗0|k = 0 and v
∗
0|k = 0 is given by

̄⊕ 
(

Lp
diam (Ω)

)

⊆ �∗̃. (26)

Alternatively, one can verify the requirements in Definition 3 by solving the nonlinear program associated with Corollary 1 con-
dition ii), see Appendix B, (B2). To recap, by focussing on approximately linear system model representations of the form (21),
we were able to set up the synthesis problem (25), in which the only required design parameters are given by ̃ and the maximum
constraint tightening factors 
x, 
u.
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Sufficient conditions to ensure local feasibility of the model predictive control problem
Different from the common case in robust control, where the disturbance set is given by the problem formulation, wewere able
to scale as large as possible through the design problem (25) to increase the chance of fulfilling (26) and to obtain a non-empty
tightened set-valued model confidence map constraint according to Definition 3. In the following, we show that this additional
degree of freedom allows us to pose sufficient conditions in terms of stabilizability and model accuracy to ensure existence of
a solution to the design problem (25) in turn implying a non-empty feasible set of the model predictive control problem (12)
around the set-point. To this end, the following intermediate step establishes a linear relation between the maximum diameter
of the RPI set Ω resulting from (25) and the maximum diameter of the disturbance set ∗.

Lemma 1. Consider a model uncertainty set ̃ around the origin subject to (24) and let (A,B) ∶=
(

)f
)x
|

|

|0,0
, )f
)u
|

|

|0,0

)

be stabiliz-
able. For a given non-negative maximum RPI set diameter ē > 0 such that diam (Ω) ≤ ē and a state-feedback matrix K such
that all eigenvalues of A + BK are strictly inside the unit circle and that satisfies

 (ē) ⊆ {e ∈ ℝn
|Axe ≤ 
̄x} and K (ē) ⊆ {u ∈ ℝm

|Auu ≤ 
̄u}, (27)

there exists a corresponding linear bound

diam
(

̃
)

≤ cΩē, (28)

on the model uncertainty set diameter with cΩ ≥ 0 that ensures feasibility of (25).

Proof. The proof can be found in Appendix C.

Lemma 1 enables us to state sufficient conditions in terms of the model accuracy via the set-valued model confidence map
such that the design procedure (25) leads to a learning-based MPC problem (12) with non-empty region of attraction (=feasible
set).

Proposition 2. Consider a system model of the form (21), let (A,B) ∶=
(

)f
)x
|

|

|0,0
, )f
)u
|

|

|0,0

)

be stabilizable, and assume thatX and
U contain 0 in their interior. If ps(0, 0) is Lipschitz continuous under the Hausdorff metric with Lipschitz constant Lps

> 0
and diam

(

̃
)

≥ diam
(

ps(0, 0)
)

> 0 sufficiently small, then the MPC Problem (12) with lf = 0, f = {0} has a non-empty
feasible set.

Proof. Since X and U contain 0 in their interior, we can conclude from Lemma 1 that there exists a maximum diameter
diam (Ω) > 0 and a constant cΩ > 0 such that �∗diam

(

̃
)

≤ cΩdiam (Ω), for an �∗ ≥ 1, which implies feasibility of the
synthesis problem (25). Let diam

(

̃
)

≤ �∗−1cΩdiam (Ω) > 0 and note that

Lps
diam (Ω) ≤ (�∗ − 1)diam

(

̃
)

(29)

is a sufficient condition for (26). Feasibility of the tightened set-valued model confidence map constraint (12c) for {zi}Ni=0 = 0
and {vi}N−1i=0 = 0 can therefore be obtained by inserting the linear bound �∗diam

(

̃
)

≤ cΩdiam (Ω) in (29) yielding Lps
≤

(1 − �∗−1)cΩ > 0. Lastly, we have by assumption that (0, 0) is a steady state for system (21) and therefore {zi}Ni=0 = 0 and
{vi}N−1i=0 = 0 is a feasible solution to (12) with the given terminal configuration, completing the proof.

From Proposition 2 we can conclude that we can always find a solution to (25) by selecting, i.e. di according to Section 4.1,
sufficiently small. Furthermore, it implies that a corresponding tightened confidencemap (Definition 3) exists such that feasibility
of the resultingMPC problem can be guaranteed around the origin, if the Lipschitz constant associated with the set-valued model
confidence map and the predicted model error at the origin are sufficiently small. For practical applications, we can therefore
conclude that infeasibility of the MPC problem due to the set-valued model confidence map constraint (12c) can be fixed by
either collecting more data around the set point or by lowering the chance constraint satisfaction probability p .

Remark 6. While we have shown that for sufficiently accurate model estimates the tube design based on (25) leads to a well-
defined MPC problem, the RPI set Ω might be overly conservative, since it is restricted to ellipsoidal shapes. The set can be
improved by approximating the true minimal polytopic robust invariant set, e.g., using the method described by Rakovic et. al.
(2005),56 which can also be applied to higher dimensional systems, see Darup and Dieter (2019)57.
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4.3 Terminal ingredients for learning-based prediction models
As presented for example by Rawlings and Mayne (2008)40 in Section 2.5 for setpoint stabilization control tasks and in Amrit et
al. (2011)58 for economic control tasks, there exist principled procedures to compute a corresponding terminal cost lf together
with a terminal set f , satisfying Assumption 2. To this end, any nominal model of the form z(k + 1) = f (z(k), v(k); �̄) can
be used long as the linearization (A,B) around a target steady-state zs, vs given by A ∶= )f

)x
(zs, vs; �̄) and B ∶=

)f
)u
(zs, vs; �̄) is

stabilizable and the model is sufficiently confident meaning that z ∈ f ⇒ p (z, �f (z)) ⊆ ̄ according to Theorem 1. The
latter requirement can be verified through the condition

0 = max
z,v,d

‖d‖̄ (30a)

s.t. z ∈ f (30b)
v = �f (z) (30c)
d ∈ p (z, v). (30d)

In case (30) does not hold, one can often either shrink the terminal set iteratively until (30) is fulfilled, withf = 0 reducing to the
case discussed in Proposition 2, or gather more data to improve themodel confidence. If more data needs to be collected, note that
(30) provides the location (z∗, v∗) in state and input space where the magnitude of model uncertainty causes problems and where
data should be obtained first. Safe collection of additional data around the desired steady state can, e.g., be achieved using a linear
stabilizing control law together with probabilistic safety verification techniques33,34,59. Existing literature therefore provides
principled ways for designing terminal components lf andf providing recursive feasibility and performance guarantees based
on the nominal system dynamics.

5 NUMERICAL EXAMPLES OF PROVABLY SAFE LEARNING-BASED MPC

5.1 Approximately linear 10-dimensional quadrotor system
Similar to recent work on robust model predictive techniques,60,47 we consider the problem of controlling a simplified quadrotor
system, which can be described by

ẋ(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x4(t)
x5(t)
x6(t)

g tan(x7(t))
g tan(x8(t))

−g
−d1x7(t) − x9(t)
−d1x8(t) + x10(t)

−d0x3(t)
−d0x7(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
0

kT u3(t)
0
0

n0u1(t)
n0u2(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, with states

x1 ∶ x rel. position
x2 ∶ y rel. position
x3 ∶ z rel. position
x4 ∶ x velocity
x5 ∶ y velocity
x6 ∶ z velocity
x7 ∶ pitch angle
x8 ∶ roll angle
x9 ∶ pitch rate
x10 ∶ roll rate

, inputs
u1 ∶ pitch rate change
u2 ∶ roll rate change
u3 ∶ vertical thrust

,

with relative position coordinates around any target position and parameters d0 = 10, d1 = 8, kT = 0.91, g = 9.81, and n0 = 10.
The input authority is limited by |u1| ≤ �∕2, |u2| ≤ �∕2 and−g∕kT ≤ u3 ≤ 2g. The only constraint on states is given by x1 ≤ 1,
representing a wall and therefore a safety-critical specification to keep the quadrotor from crashing. The control objective is to
reach and control the steady-state xr = 0n without crashing into the wall. The simulation is implemented using a Euler-forward
discretization scheme with sampling time ℎ = 0.3. We generate two data sets D40 and D200 by sampling uniformly random
points (xi, ui) around the set-point, tainted with i.i.d. normally distributed noise with zero mean and standard deviation given by
�s = 0.001.
We leverage an approximately linear system representation for small angles and select |x7| ≤ 0.75 and |x8| ≤ 0.75 as addi-

tional state constraints together with a linear model of the form f (x, u) = �⊤�(x, u) with �(x, u) = [x⊤, u⊤]⊤ and � representing
the linear system dynamics with unknown parameters d0, d1, g, n0 ,kT . To infer a distribution over the unknown parameters �
from available data using Bayesian regression as described in Section 4.1 we pick a normal prior distribution over the parame-
ters � with ��i = 0 and Σ

�
i = In.
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For the computation of the tube Ω, tube auxiliary controller �Ω, and locally
admissible model uncertainty set , we apply the synthesis procedure for approx-
imately linear systems as presented in Section 4. We select a maximum tightening
factor 
x = 
u = 0.1 together with an initial shape ̃ ∶= conv({ej ,−ej}j=1,..,10)
with ej unit vectors in j− tℎ direction, leading to a feasible solution with maximum
admissible disturbance set  = 0.01365̃. While we directly use the tightened
state and input constraint according to (23), we derive the tightened confidence
set ̄ using the Lipschitz constant of the right hand side of (20) for each state
dimension. The terminal set is selected equal to the target steady-state xs = 0n,
us = [0, 0, g∕kT ]⊤, fulfilling Assumption 2. To demonstrate the effect of the set-
valued model confidence map constraint presented in Figure 4, we compare the
approximate feasible sets of the MPC problems (12) resulting from the data set D40
with the one based on D200 using a prediction horizon ofN = 13 time steps.

FIGURE 4 Approximate feasible sets
of the model predictive control prob-
lems projected on the x−z plane based
on 20 (red) and 200 (blue) data points.

As expected, an increased number of data points leads to an increased model confidence that, in turn, render constraint (22c)
less conservative, yielding a larger feasible set. Note that there does not exist a uniform error bound, which prohibits application
of standard tube-based MPC, see Section 3.1. This is due to the state and input dependent uncertainty estimate that grows
unbounded with the unbounded system states as described in Section 3.2.

5.2 Economic operation of a nonlinear system
To demonstrate applicability of the proposed method to a nonlinear system and the extension to economic control tasks, we
consider the following numerical example61,39 with bilinear system dynamics given as

x(k + 1) =
[

0.55 0.12
0 0.67

]

x(k) +
([

−0.6 1
1 −0.8

]

x(k) +
[

0.01
0.15

])

u(k). (31)

The system is subject to state and input constraints X = {x ∈ ℝ2 ∶ ‖x‖∞ ≤ 1} and U = {u ∈ ℝ ∶ |u| ≤ 0.15}. The objective
is to minimize the value of state x2 while maintaining a positive value of x1 which is given by

l(x) = x2 +

{

−100x31, x1 < 0
0, else.

(32)

The correspondingmodel with nonlinear features according to Section 4.1 is selected
as f (x, u) = �⊤�(x, u) with �(x, u) = [x⊤, u⊤, x1u, x2u]⊤, � ∈ ℝ2×5 with 10
unknown system parameters. For illustration, we infer these parameters using two
different data setsD30 andD60, each taintedwith i.i.d. normally distributed noise with
zero mean and standard deviation �s = 0.1 and using a normal prior distribution over
the parameters �with ��i = 0 andΣ

�
i = 10I5. For controller designwe begin by defin-

ing the admissible disturbance set as  ∶= {w ∈ ℝ2 ∶ ‖w‖∞ ≤ 0.05} and follow
the corresponding tube derivation as described in Bayer et. al. (2013)61 that is based
on incremental input-to-state stability of (31). we can then select �Ω(v, x, z) = v and
verify that Ω = {e ∈ ℝ2 ∶ ‖e‖∞ ≤ 1∕3} is an RPI set according to Definition 1
for both nominal models, i.e. for expected parameters E [�] infered from both data
sets D30 and D60. In Figure 5 we illustrate a simplification of the resulting set-valued
model confidence map constraint (12c) for p = 0.9 by displaying the maximum
model uncertainty w.r.t. the infinity norm for different states and inputs. We deduce
̄60 =  and ̄30 = 0.01 as tightened confidence sets according to Definition 3.

FIGURE 5 Illustration of the set-
valued model confidence map result-
ing from D30 and D60. On the z-axis
we display with ‖p (x1, 0, u)‖∞ the
maximum model uncertainty w.r.t. the
infinity norm at x1 and u for x2 = 0.

From Figure 5 we can also conclude that the specified disturbance set would not suffices to uniformly describe all possible
state and input dependent uncertainties. Following a standard tube-based MPC approach as described in Section 3.1 would
therefore require to increase the additive disturbance set , rendering the resulting controller overly conservative.
To demonstrate the effect of the set-valued model confidence map constraint on the economic performance we perform a

stochastic simulation analysis, where we randomly generate 100 different data sets D30, D60 and apply the resulting learning
based controller with prediction horizon N = 70 to system (31) for each data set over 100 time steps starting from the initial
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condition x(0) = 0. While all generated controllers remain recursively feasible during each experiment, the average cost in case
of D30 is 0.045 ± 0.03, whereas we get −0.18 ± 0.11 for D60. This result illustrates that limited availability of data can lead to
cautious behavior, and the performance can be improved through additional data.

6 CONCLUSION

We presented a model predictive control approach that supports learning-based probabilistic prediction models and thereby
enables efficient learning-based controller design. Using a tube-based model predictive control mechanism at the core of the
method in combination with the idea of planning in confident subsets, we provide rigorous recursive feasibility and closed-
loop constraint satisfaction and performance. The presented formulation provides a flexible interface to different classes of
probabilistic predictionmodels and allows easy adaptation to different control problems such as trajectory tracking and economic
model predictive control. To facilitate application of the controller, we proposed an efficient design procedure for obtaining the
required tube and tube controller for linear prediction models. Using an approximately linear 10-dimensional quadrotor system
to achieve set-point stabilization together with a nonlinear economic control task, we demonstrated the application of the design
procedure and the behavior of the learning-based model predictive controller.

How to cite this article: K. P. Wabersich and M. N. Zeilinger (2019), Nonlinear learning-based model predictive control
supporting stochastic state and input dependent model uncertainty estimates.

APPENDIX

A HAUSDORFF METRIC

Definition 4. The Hausdorff metric between two sets and  in a metric space (M,dM) is defined as

dH(,) ∶= max
{

sup
a∈

inf
b∈

dM(a, b), inf
a∈

sup
b∈

dM(a, b)
}

.

B MODEL UPDATE VERIFICATION PROBLEMS ACCORDING TO COROLLARY 1

Conditions i) and ii) in Corollary 1 can be verified through the conditions

0 = max
z,v

‖d‖p (z,v)
(B1a)

s.t. (z, v) ∈ ℤ̄ (B1b)
d ∈ +

p
(z, v) (B1c)

0 = max
z,v,x

‖d‖ (B2a)

s.t. (z, v) ∈ ℤ̄, x ∈ z ⊕Ω (B2b)
+
p
(z, v) ⊆ ̄ (B2c)

d ∈ +
p
(x, �(v, x, z)) (B2d)

using nonlinear optimization methods for, e.g., the case of Bayesian regression as described in Section 4.1, rendering (B2c) into
a set of nonlinear inequality constraints. If either (B1) or (B2) has an optimal value greater than zero, then i) or ii) in Corollary 1
does not hold.

C PROOF OF LEMMA 1

Proof. The proof of Lemma 1 is structured as follows. We start by solving the standard Lyapunov equation based on the stabi-
lizing feedback gain K to obtain an ellipsiodal nominal invariant set Ω (RPI set for disturbances ̃ = {0}) and scale it such that
diam (Ω) ≤ ē. Based on the set Ω we then argue that there exists the desired linear relation of the form (28) that ensures that Ω
is RPI for ̃ ≠ {0} small enough.
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Since all eigenvalues of A+BK are strictly inside the unit circle, for every symmetric positive definite matrix Q there exists
a symmetric positive definite matrix P such that the equation

e⊤(A⊤c PAc − P )e ≤ −e
⊤Qe (C3)

holds with Ac = A + BK . Using (C3) we define the ellipsoidal set of the form Ω ∶= {e|e⊤Pe ≤ cP } and select cP ∶= �−(P )ē2
with �−(P ) the smallest eigenvalue of P . The specific choice of Ω implies for e ∈ Ω that e⊤Pe ≥ �−(P )e⊤e and e⊤Pe ≤ cP =
�−(P )ē2 yielding the relation maxe∈Ω ‖e‖ ≤ ē ⇒ diam (Ω) ≤ ē.
Next, we derive an auxiliary result, which we will be needed later to show robust invariance of Ω for small disturbances.

Therefore we first need to find a possibly large 2-norm ball contained in Ω. Note that for all e such that e⊤Pe = cP we have
‖e‖2 �+(P ) ≥ cP resulting in ‖e‖2 ≥ �−(P )

�+(P )
ē2, with �+(P ) the largest eigenvalue of P , implying that the desired ball is given

by 
(√

�−(P )
�+(P )

ē
)

⊆ Ω. The auxiliary result we want to establish is a linear bound of the form (28) such that for all e ∈


(

0.5
max(‖Ac‖,1)

√

�−(P )
�+(P )

ē
)

it follows e+ ∈ 
(√

�−(P )
�+(P )

ē
)

. To this end we select for all e ∈ 
(

0.5
max(‖Ac‖,1)

√

�−(P )
�+(P )

ē
)

through the
bound

e+ ≤ ‖

‖

Ace + d‖‖ ≤ 0.5
√

�−(P )
�+(P )

ē + d̄

the maximum disturbance diameter as d̄ ≤ (1 − 0.5)
√

�−(P )
�+(P )

ē, which provides us the desired relation of the form d̄ ≤ c1ē such

that ‖e+‖ ≤
√

�−(P )
�+(P )

ē and therefore e+ ∈ 
(√

�−(P )
�+(P )

ē
)

⊆ Ω.
Using the previously derived auxiliary result, we will now establish the desired bound (28) such that Ω is RPI. To this end it

remains to show that

∀e ∈ Ω such that ‖e‖ ≥ 0.5
max(‖Ac‖,1)

√

�−(P )
�+(P )

ē it holds e+ ∈ Ω, (C4)

because for all ‖e‖ ≤ 0.5
max(‖Ac‖,1)

√

�−(P )
�+(P )

ē we already know that e+ ∈ Ω by the auxiliary result. From (C4) we continue by

requiring for all e ∈ Ω with ‖e‖ ≥ 0.5
max(‖Ac‖,1)

√

�−(P )
�+(P )

ē that e+⊤Pe+⊤ ≤ e⊤Pe, yielding a sufficient condition for (C4) equal to

e⊤(A⊤c PAc − P )e + 2d
⊤PAce + d⊤Pd ≤ 0. (C5)

The left hand side of (C5) can be bounded from above as

e⊤(A⊤c PAc − P )e + 2d
⊤PAce + d⊤Pd

≤ − e⊤Qe + 2d⊤PAce + d⊤Pd

≤ − �−(Q) 0.25
max(‖Ac‖, 1)2

�−(P )
�+(P )

ē2 + 2 ‖
‖

PAc‖‖ ēd̄ + �
+(P )d̄2,

providing us a sufficient choice for d̄ > 0 by solving

−�−(Q) 0.25
max(‖Ac‖, 1)2

�−(P )
�+(P )

ē2 + 2 ‖
‖

PAc‖‖ ēd̄ + �
+(P )d̄2 = 0.

Utilizing the quadratic formula one obtains

d̄ =
−2 ‖

‖

PAc‖‖ ē + (−)
√

4 ‖
‖

PAc‖‖
2 ē2 + �−(Q)

max(‖Ac‖,1)2
�−(P )
�+(P )

�+(P )ē2

2�+(P )
=
−2 ‖

‖

PAc‖‖ +
√

4 ‖
‖

PAc‖‖
2 + �−(Q)�−(P )

max(‖Ac‖,1)2

2�+(P )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

c2>0

ē.

Finally, define the required cΩ ∶= min{c1, c2} for which the previously constructed set Ω is RPI under condition (28). The
resulting solution candidate E∗ ∶= (Pc−1P )

−1 and Y ∗ ∶= KE∗ satisfy by assumption (27) the constraints (25d) and (25e).
Furthermore, because Ω is RPI, it follows due to necessity of the S-Lemma54 that there exists a �∗ ≥ 0 such that (25c) holds,
implying together with �∗ = 1 overall feasibility of (25), which is was we wanted to show.

Data Availability Statement
Data sharing is not applicable to this article as no new real world data were created or analyzed in this article.
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